Gunbower / Leitchville Groundwater Applicants Update

Agenda

- 1. Welcome Ann Telford, General Manager Customers & Stakeholders GMW
- 2. Overview Matt Pethybridge, Groundwater & Streams Manager GMW
- 3. GHD technical assessment Jeff Morgan, Senior Hydrogeologist GHD
- 4. Determining groundwater licence volumes Nick O'Halloran, Senior Irrigation Officer Agriculture Victoria
- 5. Licence assessments Matt Pethybridge GMW
- 6. What's next / wrap up Ann Telford GMW

Overview Matt Pethybridge - GMW

Overview - background

- Since we last met back in February, GHD Pty Ltd (GHD) were engaged by GMW to undertake a technical assessment of the ground water resources.
- The high levels of salinity were identified as a risk by GMW and its partner agency Agriculture Victoria. We have been working together to expedite the process.
- GMW has a number of requirements under the Water Act 1989 including the applications of licences and the protection of the resource itself.
- Today, we have invited you to discuss the results and recommendations of the GHD report as we work through a process to consider licence applications.

Overview - responsibilities

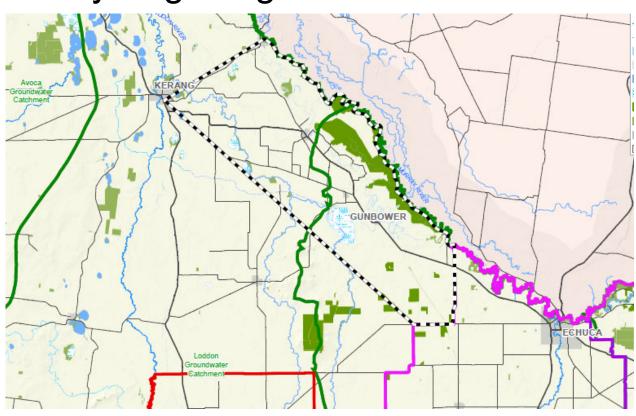
GMW		GHD	Agriculture Victoria
 Responsible delegate for the for Water, in Northern Victor management of water resource. Minister for Water's Delegate water licencing 	ria for the rces • Engaged by hydrogeolo	sultant in hydrogeology GMW to undertake a gical assessment on the / Torrumbarry area	 Responsible for sustainable agricultural guidelines Provide advice to GMW on the management of saline groundwater

Overview - update on current applications

- GMW paused the assessment of applications.
- We acknowledge the delays while information regarding the groundwater resource was obtained.
- Applications are at various stages of processing.

Overview – assessment

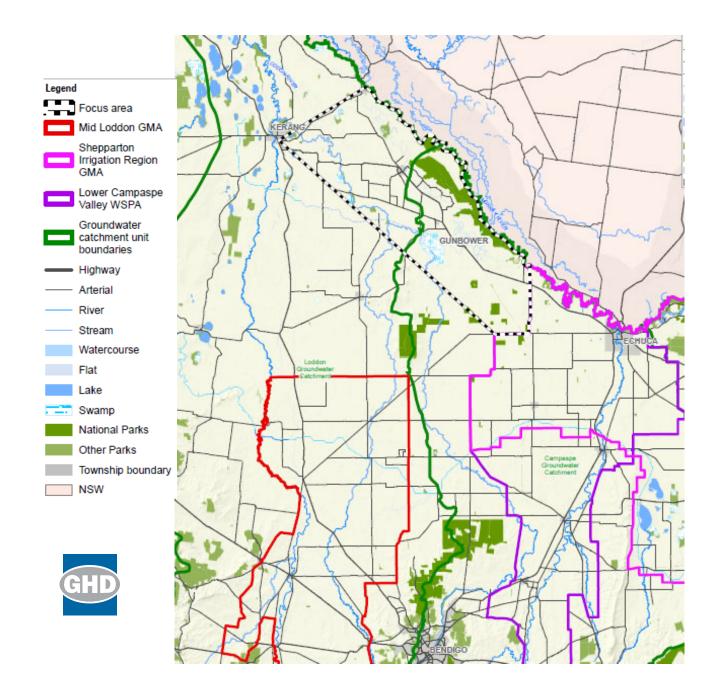
- Purpose of the study
- Background
- Study findings:
 - o currently **5,600 ML/yr** available
 - o currently **1,945 ML/yr** already licensed in the area
 - o an additional **3,655 ML/yr** can be allocated

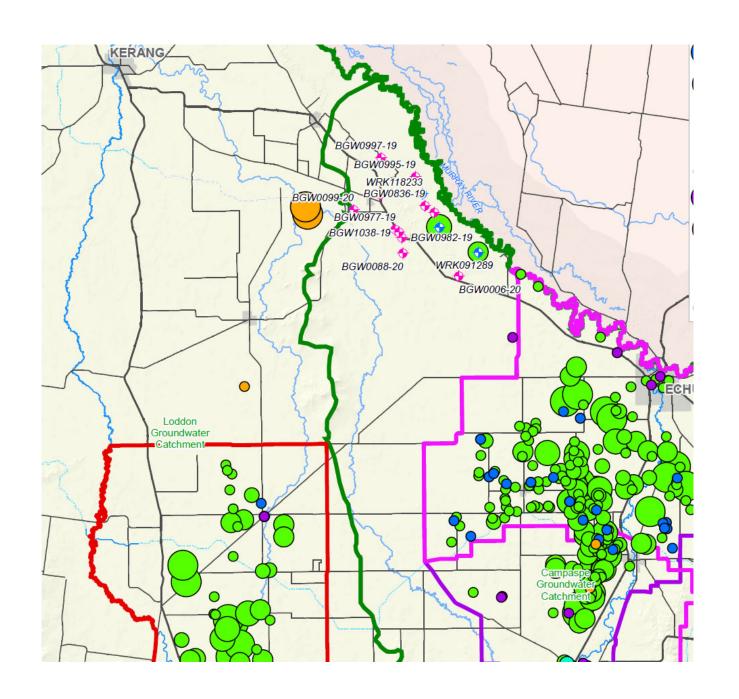

Overview – assessment cont'd

- Groundwater resources
- Risks identified
- Recommendations made by GHD include:
 - o Limit initial licence entitlements to **5,600 ML/year** within the focus area.
 - o Undertake further technical investigations to assess the potential impacts of additional extraction
 - Complete further work in regards to determine available groundwater entitlements

Gunbower Area Hydrogeological Assessment

Jeff Morgan
 Senior Hydrogeologist


Project Drivers & Objectives


Drivers

- An increase in exploration and licence applications for extraction from the deep lead around the township of Gunbower.
- This is an Unincorporated Area (ie.no local management system in place).

Project Objective

- to inform the development of a sustainable yield (SY) for the deep lead aquifer in the Gunbower region.
- Aquifer Sustainable Yield?
 - Not cause continual groundwater decline.
 - Not cause adverse impacts on groundwater dependent values (ie other users, groundwater quality, groundwater dependent ecosystems).
- First stage assessment; based on a desktop hydrogeological assessment

Project Methodology:

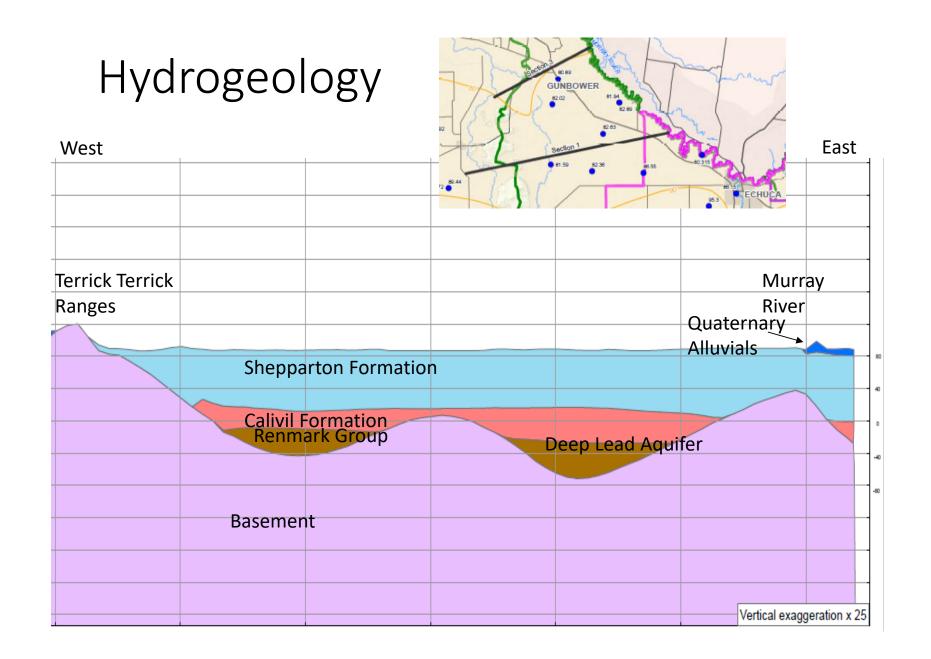
Task 1: Hydrogeological Data Review:

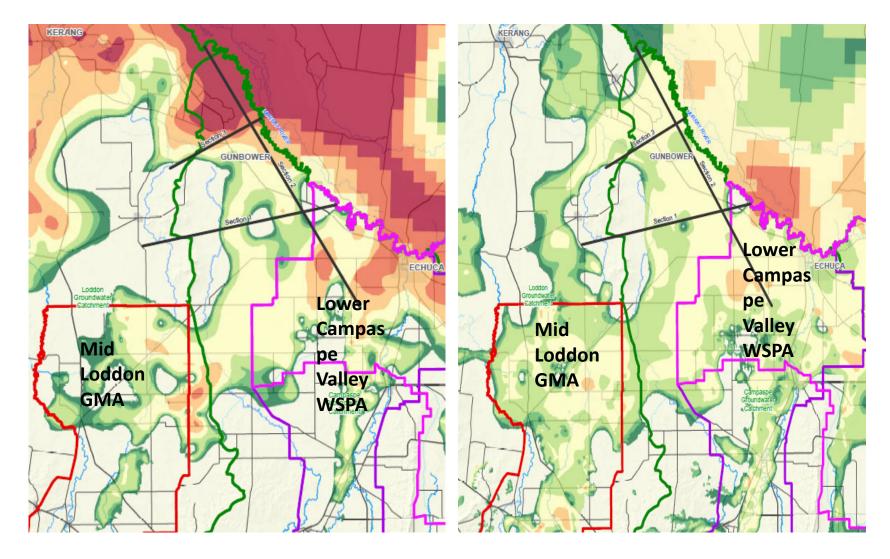
Gather all available hydrogeological data.

Task 2: Hydrogeological Conceptualisation:

Based on the available data, develop the Conceptual Hydrogeological Model (CHM) for the aquifer system in this area, including:

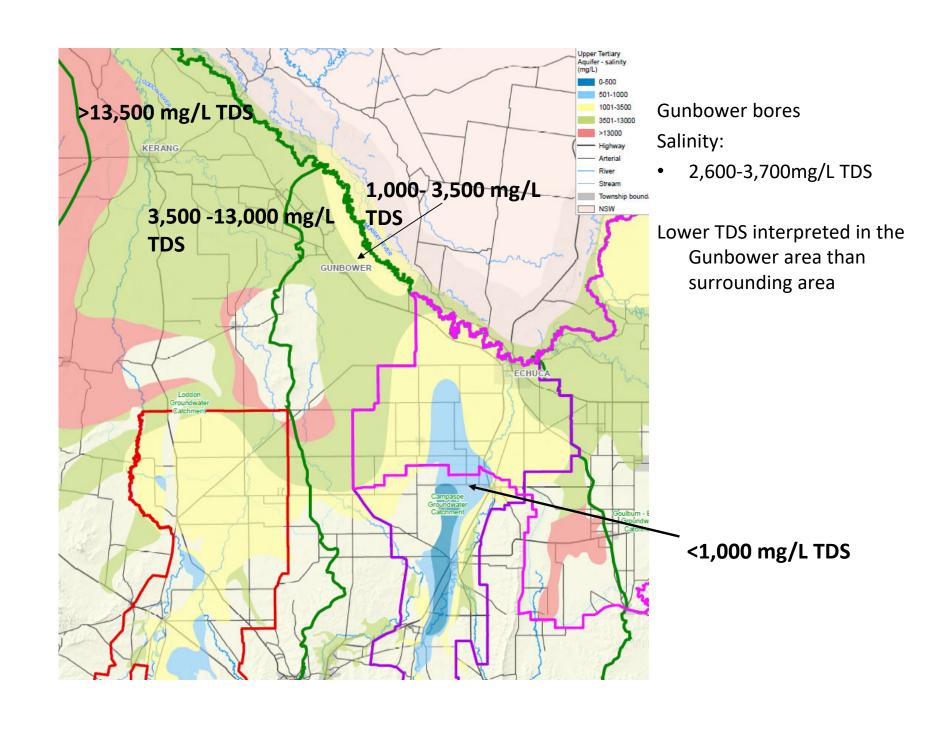
- identification of the impacts/risk of groundwater extraction
- level of interaction with the other GMUs.

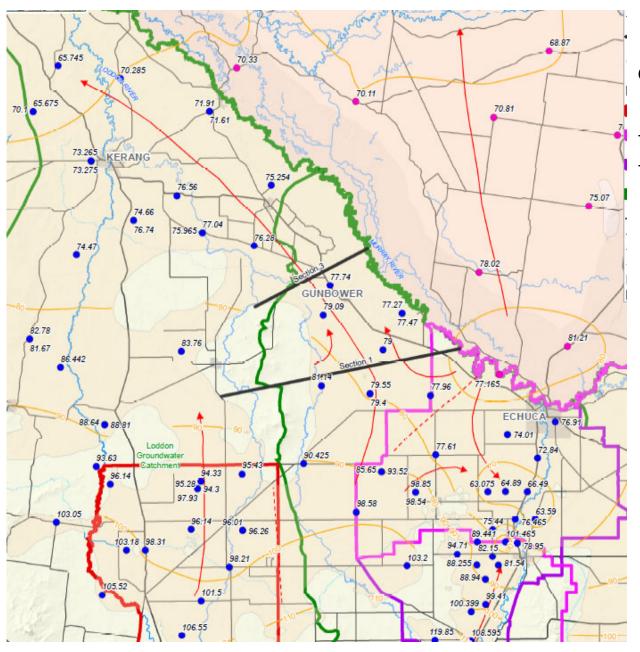

Task 3: Preliminary estimate of aquifer recharge (throughflow):


As first past assessment of the limits of the resource (SY), the annual throughflow in the aquifer system was estimated.

Task 4: Reporting

Including:


- identify any key data gaps
- recommendation on further work

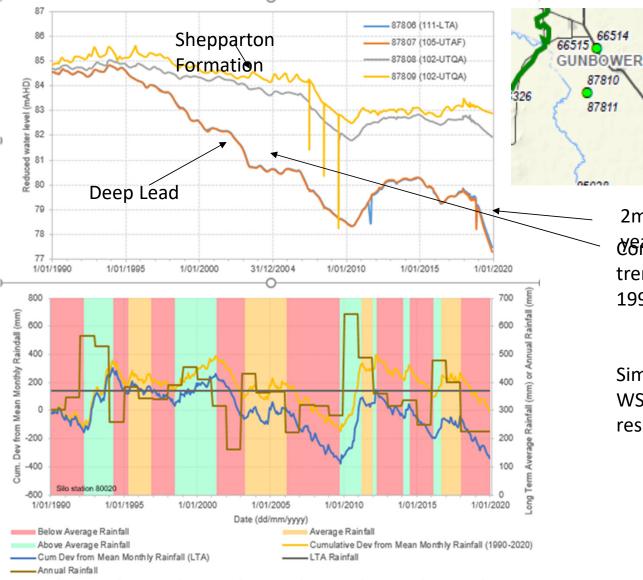


Renmark Formation Thickness and extent

Calivil Group Thickness and extent

Groundwater Flow

- N to S generally
- Drawdown in LCV


Groundwater use

Groundwater entitlement and use in the region was reviewed for the four water system sources

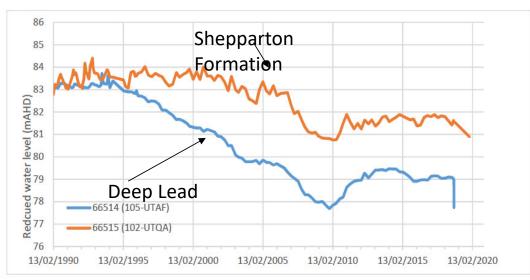
Water·System- Source¤	Current- licenced- volume-(ML)¤	2016/17·(ML)¤		2017/18·(ML)¤		2018/19·(ML)¤		¤
		Volume-(ML)¤	%·licenced· volume¤	Volume-(ML)¤	%-licenced- volume¤	Volume-(ML)¤	%·licenced· volume¤	x
Lower-Campaspe- Valley-WSPA¤	55,860¤	24,383¤	44%¤	37,409¤	67%¤	50,259¤	90%¤	x
Mid·Loddon⋅GMA¤	33,927¤	12,285¤	36%¤	24,152¤	71%¤	30,300¤	89%¤	x
Shepparton·Irrigation· Region·GMA¤	185,321¤	54,220¤	29%¤	76,610¤	41%¤	93,828¤	51%¤	x
Unincorporated⋅¤	34,748¤	1,816¤	5%¤	3,008¤	9%¤	4,061¤	12%¤	x
Grand·Total¤	309,856¤	92,704¤	30%¤	141,179¤	46%¤	178,448¤	58%¤	x

- In last 5 years- generally highest use in 2019, lowest in 2016
- LCV WSPA and Mid Loddon around 90% use of entitlement in 2019

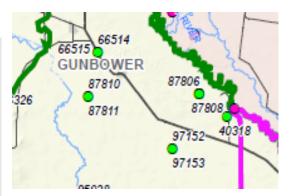
Groundwater Level Trends 87806 (111-LTA) 86 87807 (105-UTAF)

2m decline last 2 & Affinual Declining trend from around 1995

87806

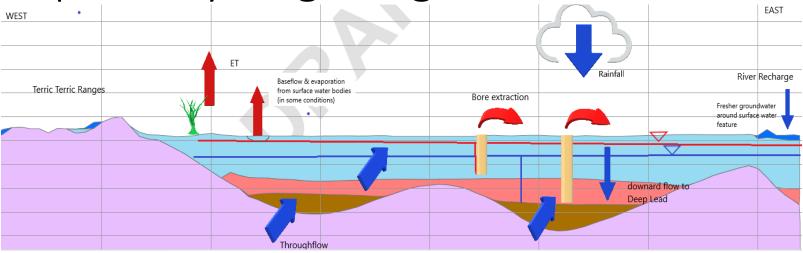

97153

87810


87811

Similar to LCV WSPA: regional response

Groundwater Level Trends



- 66514/15
- Further from LCV WSPA –
 same trends

Conceptual Hydrogeological Model

- Deep Lead Aquifer:
- Recharge Processes:
- Downward Leakage from Shepparton Formation aquifer
- Throughflow from adjacent areas

Deep Lead Aquifer:

Discharge Processes:

- Upwards Leakage to Shepparton Formation aquifer (some conditions)
- Throughflow to adjacent areas (i.e. further west into the Murray Basin/NSW)
- Extraction

Risks Associated with Additional Extraction from the Gunbower Area

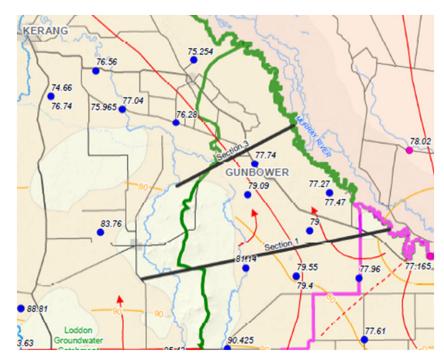
- Based on the hydrogeological conceptualisation: GHD completed a qualitative assessment of the risks associated with <u>increased long term extraction</u> from the Deep lead aquifer in the area.
- The objective being to identify key/high risks that may require prioritisation for further investigation, technical assessment or focus for monitoring plans, when GMW consider additional applications.

Considered impacts:

- Impact on Deep Lead aquifer sustainability (ie. gw levels and quality in the Gunbower Area).
- Impact on Shepparton Formation aquifer sustainability (Gunbower Area).
- Impact on surface water features and GDEs.
- Impact on existing Deep Lead aquifer existing bores (Gunbower area).
- Impact on Deep Lead aquifer sustainability (Adjacent LCV WSPA).
- Impact on Deep Lead aquifer sustainability (Adjacent Mid Loddon WSPA).
- Impact on Deep Lead aquifer sustainability (In NSW).

The following were considered high risks, associated with increased extraction from the Gunbower area:

- Groundwater salinity impacts:
 - Salinity in the Gunbower region may increase due to additional extraction, as the area of potential development is slightly fresher than the surrounding area.
- Impact on the Deep Lead aquifer sustainability (in the Adjacent LCV WSPA).
 - Fully allocated
 - Triggers in place to restrict extraction if groundwater levels decline
 - Potentially over allocated /extraction already
 - Under stress, particularly under dry climate/high extraction
 - Groundwater in Gunbower not sourced from this WSPA, but there is potential for interaction under drier climate/additional extraction
- Climate change impacts:
 - Potential to influence groundwater recharge and long term sustainability of Deep Lead aquifer system (Gunbower & other GMUs).


Aquifer Throughflow estimation

- As a first pass assessment of the sustainable yield of the resource in the Gunbower area, the annual throughflow in the deep lead aquifer in the Gunbower area has been calculated.
- The throughflow estimate is based on the Darcy Equation:
 - Q (Flow) =

 K (hydraulic conductivity) x

 A (cross sectional area) x

 i (hydraulic gradient).
- Used two cross sections :
 - · upgradient and downgradient areas
- Hydraulic gradient:
 - from the potentiometric figures

Aquifer Throughflow estimation

- Aquifer Hydraulic Conductivity (K): regional data
- To assess the throughflow sensitivity two K cases were assumed:
 - Median K:
 - Calivil Formation: 60 m/day. Median from CDM smith, 2016.
 - Renmark formation: 116 m/day. Median from CDM smith, 2016.

-High K:

 Calivil and Renmark Formation: 185 m/day. Applicable to Murray trench (Nolan ITU, 2001a) and considered realistic based on existing bore yields in the area (ie >50 L/sec to 250 L/sec)

Aquifer Throughflow estimation

Component-¤	Median·K·Case¤	High-K-Case¤	30
(a)·Up-gradient·Throughflow·(Section·1)··(ML/year)····¤	5,103¤	12,276¤	10
(b)·Down-gradient·Throughflow·(Section·3)··(ML/year)∞	7,221¤	17,240¤	10
(b-a)·Difference·in·Throughflow·∞	2,118¤	4,964¤	10
(c)-Existing-Extraction-(Licenced)-in-area∞	700¤	700¤	10
(<u>b+c</u>)·Estimated·Available·Throughflow·⋅¤	7,920¤	17,940¤	ß

- As a more conservative approach, considering the likely variability of the hydraulic conductivity of the deep lead aquifer, the median K case is considered most applicable. Therefore groundwater available for extraction in the Gunbower area is estimated to be approximately 8,000 ML/year, with a low confidence rating.
- Low confidence rating, the main reason being the uncertainty in regards to the aquifer parameters with no
 local pumping tests to validate the aquifer parameters used in the assessment.
- Considering the uncertainties associated with local aquifer parameters, it was recommended restricting licensing to 70% of the median throughflow at Gunbower (i.e. 5,600 ML/year), accepting the risks identified and also considering groundwater declines noted in the Millennium drought
- IF this volume is extracted what are the other potential impacts?
 - le expect groundwater decline would stabilize in this area but what are the other impacts across the region

Conclusions

- The high risks associated the increased groundwater extraction from the Deep Leads aquifer in the Gunbower area, included:
 - Groundwater quality decline (i.e. salinity increase) due to additional extraction.
 - Impact on Deep Lead aquifer sustainability in the adjacent Lower Campaspe Valley WSPA.
 - Climate change impacts on aquifer recharge and long term sustainability.

Aquifer Throughflow

• As a first pass assessment of the sustainable yield of the resource, groundwater available for extraction in the Gunbower area is estimated to be approximately 8,000 ML/year, with a low confidence rating and recognising the high risks noted above.

Recommendations

- 1. Limit entitlements to 5.600 ML/year.
 - 70% of the median throughflow calculated, considering the uncertainties associated with local aquifer parameters.
 - While further investigations are completed to assess the potential impacts of additional extraction and to provide a more technically rigorous sustainable yield estimate.

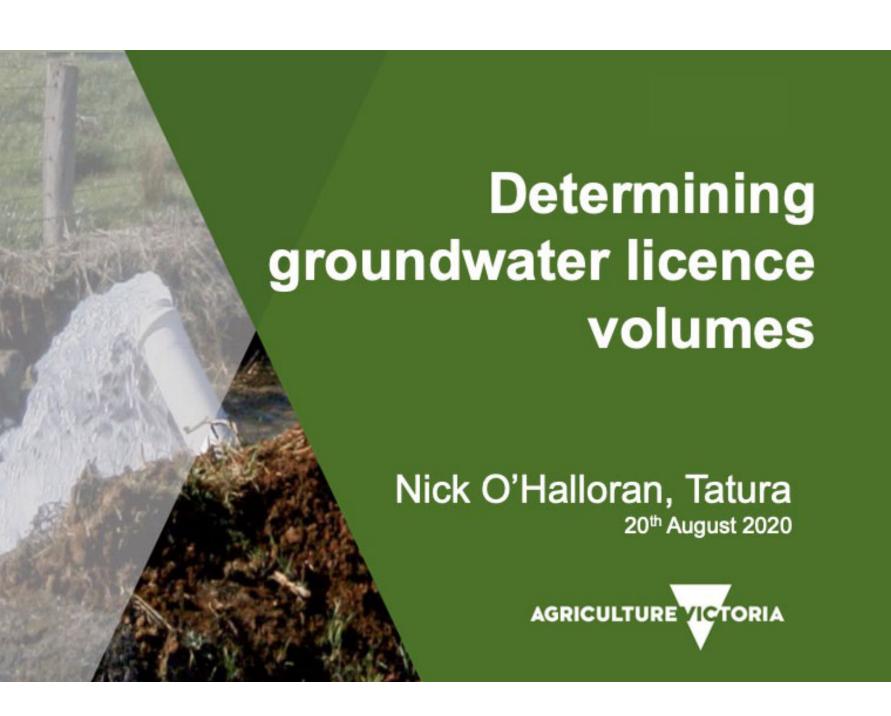
2. Complete further technical investigations:

- Pumping tests: As a priority, to further inform the throughflow estimations.
- Numerical groundwater modelling: to assess the potential impact of additional extraction on existing
 groundwater users (i.e. nearby GMU/cross border), overlying aquifer system and surface water features. The
 potential high risk impacts include the nearby LCV WSPA, warrants a more rigorous technical assessment, to
 quantify the sustainable yield as a connected resource.
- Monitoring of gw quality in surrounding and adjacent observation bores to identify any longer term changes.

3. Bore Licensing Conditions

4. Further work to be completed in regards to the management in NSW

www.ghd.com


Question time

Please type your first name into the chat section and I will ask you unmute your microphone to ask a question.

OR

Type your question in the chat section and it will be read out for you.

Principles for determining licence volume

Guiding policies from Water Act 1989:

- Policy for managing Take and Use licences
- Standard water use conditions

Requires appropriate management to minimise both short and long terms impacts:

- · managing groundwater infiltration
- managing disposal of drainage water
- minimising salinity of both soil and downstream waterways
- · protecting biodiversity, and
- · minimising cumulative impacts of water use

The process for determining licence volume

Application made to GMW

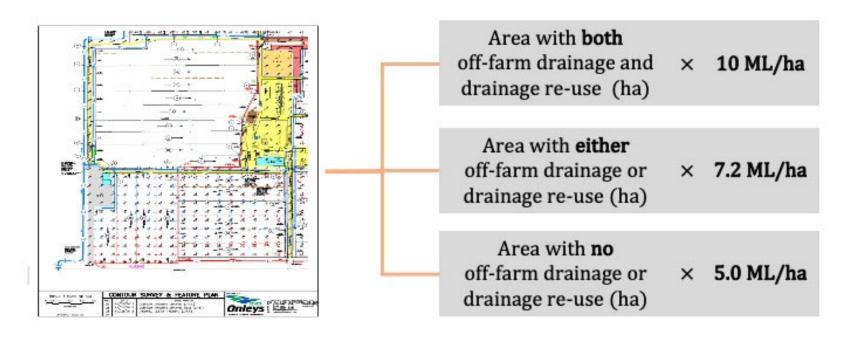
Application referred to Agriculture Victoria to calculate maximum groundwater licence volume based on:

- Whole Farm Plan
- Farm drainage classes
- Groundwater salinity

Application proceeds with GMW based on maximum groundwater licence volume

Agriculture Victoria are available to provide assistance throughout the process

Jobs, Precincts and Region



Step 1: Calculate maximum application rate (MAR)

MAR = maximum application rate (ML/ha) from all irrigation water sources Requires a Whole Farm Plan that identifies:

- area proposed to be irrigated with groundwater
- · area currently supplied by surface irrigation water
- area with access to off-farm drainage and drainage re-use

MAR for Drainage Classes from the Standard Water Use Conditions

Step 2: Calculate groundwater component of the maximum application rate (MAR)

Target average salinity from all sources is 800EC

We consider the volume (ML/ha) and salinity level (EC) of each water source, and adjusts groundwater and channel water volume to achieve an average salinity level of 800EC

- groundwater ≈ 5000 EC (measured salinity of your bore)
- channel water ≈ 150 EC
- rainfall ≈ 0 EC

Note: 10 ML/ha/year at 800 EC this equates to 5.1 t salt applied

Groundwater component of MAR (ML/ha) x total area (ha) = maximum groundwater licence volume (ML)

An example – 100ha property

Step 1: Calculate MAR

50 ha with off farm drainage AND re-use

10ML/ha x 50ha = 500ML

50 ha with re-use drainage only

7.2ML/ha x 50ha =360ML

Zero ha with no off farm drainage or re-use

5ML/ha 0ha = 0ML

Maximum application rate from all irrigation water sources MAR = 860ML over 100ha or 8.6ML/ha

An example – 100ha property (continued)

Step 2: Calculate groundwater component of MAR

Target average salinity 800 EC

Groundwater	Channel water	Rainfall
1.8 ML/ha	6.8 ML/ha	4 ML/ha (400 mm)
5000 EC	150 EC	0 EC

For 100 ha maximum groundwater licence volume = 181ML

Examples of maximum groundwater licence volumes

	Drainage		Groundwater	Total irrigable area (ha)	
	Re-use only	Off-farm & re-use	component of MAR	100	200
Scenario 1	0%	100%	2.0 ML/ha	200 ML	400 ML
Scenario 2	50%	50%	1.8 ML/ha	181 ML	362 ML
Scenario 3	0%	0%	1.3 ML/ha	133 ML	266 ML

Next steps

- Applications will be referred to Agriculture Victoria from GMW
- Contact Agricultural Victoria staff directly:
 - To calculate an indicative maximum groundwater licence volume before progressing your application further
 - For information on risks and best management practices for irrigating with saline groundwater or other irrigation related enquiries
 - Nick O'Halloran: 0438 321 528

nick.ohalloran@agriculture.vic.gov.au

Question time

Please type your first name into the chat section and I will ask you unmute your microphone to ask a question.

OR

Type your question in the chat section and it will be read out for you.

Licence assessments Presented by Matt Pethybridge

Overview: licence assessments

- Consideration for licence assessment
- Licence assessment: Key matters to be taken into account under Section 40 of the Water Act 1989

Considerations for licence assessment

- Overall groundwater resource
- Secondary impacts from the use of high salinity water (use of water)
- Legal requirement on GMW
- Assessment under Section 40 of the Water Act

GMW's licensing process

Key matters to consider (s.40 of the Water Act 1989):

- Potential for impact on existing water uses
- Consider future water availability and quality
- Impacts on waterways and aquifers
- Environmental features (e.g. groundwater dependent ecosystems)
- Relevant groundwater management plan and objectives
- Use of the water
- Considering the needs of other potential applicants
- Permissible Consumptive Volume (i.e. a cap on licence entitlement)

Question time

Please type your first name into the chat section and I will ask you unmute your microphone to ask a question.

OR

Type your question in the chat section and it will be read out for you.

What's next

For Customers:

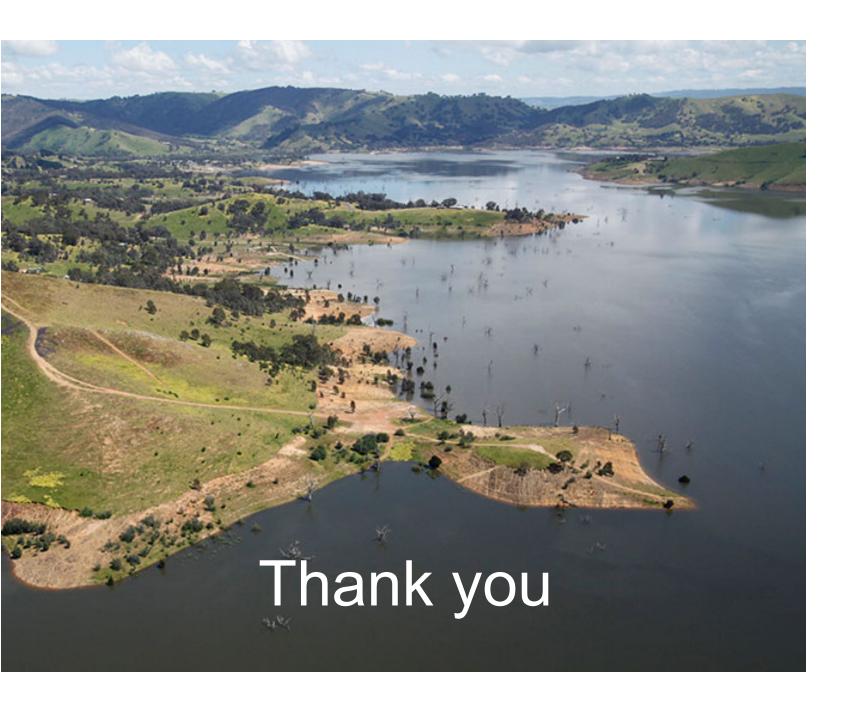
- GMW will contact you over the next week (once you have had time to review all the information) to discuss your options in more detail.
- In the meantime, if you have any questions please contact the following GMW staff:

Matt Pethybridge: 03 5826 3702

Dale McGraw: 03 5450 5301

Scott Ridges: 03 5826 3485

For GMW:


We will further consider the licensing approach to ensure we fully address the Water Act.

Thank you for attending

How did you find our information session today? Please enter a number in the chat box before you leave.

1. Very poor 2. Poor 3. Okay 4. Good 5. Very Good

Contact us

